Old But Gold: Historical Pathways and Path Dependence

Diogo Baerlocher University of South Florida Diego Firmino PIMES/UFRPE

Guilherme Lambais University of Lisbon

Eustáquio Reis IPEA Henrique Veras PIMES/UFPE

Urban Economic Association, September, 2024

Introduction

Motivation

- What drives the spatial distribution of economic activity and population?

→ Unique/Multiple Equilibria depend on magnitude of spillovers (Allen and Donaldson, 2022)

What we do?

- 1. Study the effects of historical pathways (Gold and Mule Roads) on the spatial distribution of population in Brazil
 - Findings: Positive effect
- 2. Characterize what type of historical shock this is
 - Findings: Path dependence

What we do?

- 1. Study the effects of historical pathways (Gold and Mule Roads) on the spatial distribution of population in Brazil
 - Findings: Positive effect
- 2. Characterize what type of historical shock this is
 - Findings: Path dependence

Empirical challenges:

- 1. Isolate first nature effects from second nature effects
- 2. Persistence and Path Dependence often lead to same long-run outcome:
 - 2.1 Need to observe dynamics; and
 - 2.2 Quantify the strength of spillovers

Empirical Strategy

Empirical Approach

- The growth of Brazilian settlements in the hinterlands followed the Gold Roads

Empirical Approach

- Two complementary analyses:
 - Gold roads that interconnected the primary gold regions discovered since 1700
 - Mule roads that connected the various regions to the economic clusters following the Gold Rush
 - The historical pathways gave birth to the Road towns

- The information about the gold roads was georeferenced from Simonsen (1977) map
- We compute Gold Road Density as the area of a 5-km buffer around gold roads over municipality's area

A. Gold Roads

B. Gold Roads Density

- In the case of Mules Roads, we transcribe data from historical documents issued by the Brazilian imperial government in 1863 and 1873.
 - Effective distances between municipality seats traveled primarily by ground transportation
- We only have information about the connections, not the pathways.
- We compute least-cost paths to compute Mule Road Densities

- The sample consists of municipalities crossed by a historical road and their contiguous neighbors
- We exclude from the sample:
 - Municipalities created before 1700
 - Nodes ("Inconsequential Units Approach," Redding and Turner, 2015)

Regression Equation

- We estimate the following regression equation

$$y_i = \alpha_s + \beta \text{Road Density}_i + \mathbf{X}'_i \gamma + \varepsilon_i$$

- y_i denotes a measure of economic concentration (population density, nightlight incidence, or urban population density)
- Road Density; captures the influence of historical road density
- \mathbf{X}_i contains additional geographical covariates (temperature, elevation, precipitation, TRI, area, and second-order polynomial of latitude and longitude)

Threats to Causal Interpretation of β

- 1. Pathways are built along previously developed areas:
 - Inconsequential Units Approach + Use least-cost paths as instrumental variable (or directly as in the case of Mule roads)
- 2. Least-cost paths capture advantageous geography:
 - Geography controls + Placebo test
- 3. Pathways are optimal routes between previously developed areas:
 - Random location of gold deposits + Placebo test
- 4. Central regions are more likely to receive treatment (pathways) and to develop:
 - Random location of gold deposits + Re-centering (Borusyak and Hull, 2023)

Historical Pathways and Current Population Density

Pathways of the colony: Gold Roads

Table 1: Gold roads and current population density

	(1) (2)		(3)	(4)	
Panel A - Dep. Var.: Pop	ulation De	nsity:			
Gold Road Density	5.27***	3.62***	1.97***	2.01***	
	(0.954)	(0.747)	(0.602)	(0.632)	
Observations	2,092	2,092	2,092	2,092	
Cluster Groups	260	260	260	260	
Panel B - Dep. Var.: Nig	htlights:				
Gold Road Density	4.32***	2.65***	1.45***	1.40***	
	(0.519)	(0.392)	(0.386)	(0.412)	
Observations	2,092	2,092	2,092	2,092	
Cluster Groups	260	260	260	260	
Panel C - Dep. Var.: Url	oan Popula	tion Densit	y		
Gold Road Density	6.03***	4.12***	2.34***	2.34***	
	(1.04)	(0.805)	(0.665)	(0.699)	
Observations	2,091	2,091	2,091	2,091	
Cluster Groups	260	260	260	260	
Kleibergen-Paap F: Fixed-Effects: Geography Controls Lati-Longi Polynomial:	83.159	87.724 State	82.966 State	82.869 State	

- Positive association between access to gold roads and population density, nightlights, and urban population density
- Robustness the results remain unchanged when:
 - Include all municipalities
 - Exclude municipalities located within 100 km from the coast
 - Spatially robust standard errors

Pathways of the empire: Mule Roads

Table 3: Mule roads and population density

	(1) (2)		(3)	(4)	
Panel A - Dep. Var.: Pop	ulation De	nsity:			
Mule Road Density	1.91***	1.28***	0.453***	0.425***	
	(0.221)	(0.118)	(0.083)	(0.082)	
Observations	3,347	3,347	3,347	3,347	
Cluster Groups	367	367	367	367	
Panel B - Dep. Var.: Nig	htlights:				
Mule Road Density	1.64***	1.18***	0.533***	0.468***	
	(0.138)	(0.109)	(0.083)	(0.084)	
Observations	3,347	3,347	3,347	3,347	
Cluster Groups	367	367	367	367	
Panel C - Dep. Var.: Url	oan Populai	tion Densit	y		
Mule Road Density	2.22***	1.51***	0.597***	0.549***	
	(0.226)	(0.134)	(0.099)	(0.099)	
Observations	3,346	3,346	3,346	3,346	
Cluster Groups	367	367	367	367	
Fixed-Effects: Geography Controls Lati-Longi Polynomial:		State	State √	State ✓	

- This association is not restricted to gold roads
- Results are similar when we use the ground transportation network in 1870s that grew out of the gold roads

Placebo

Table 4: Placebo roads and population density

	(1)	(2)	(3)	(4)	
Panel A - Dep. Var.: Pop	ulation De	nsity:			
Placebo Density	1.36***	0.655***	0.169*	0.125	
	(0.293)	(0.144)	(0.102)	(0.094)	
Observations	3,240	3,240	3,240	3,240	
Cluster Groups	347	347	347	347	
Panel B - Dep. Var.: Nig	htlights:				
Placebo Density	1.64*** 0.438***		0.121	0.014	
	(0.089) (0.116)		(0.094)	(0.086)	
Observations	3,240	3,240	3,240	3,240	
Cluster Groups	347	347	347	347	
Panel C - Dep. Var.: Url	oan Popula	tion Density			
Placebo Density	2.30***	0.758***	0.232**	0.173	
	(0.170)	(0.151)	(0.116)	(0.109)	
Observations	3,239	3,239	3,239	3,239	
Cluster Groups	347	347	347	347	
Fixed-Effects: Geography Controls Lati-Longi Polynomial:		State	State <	State ✓	

 Moreover, the effects are driven by the existence of routes rather than representing optimal paths between previously developed locations

Findings

- History matters: The evidence suggests that the historical event of gold and mule roads influence the distribution of population in 2010

Why?

- These pathways became obsolete a long time ago: they are unlikely to bring any advantage today
- Persistence: did pathways lead to a larger factor densities that take long to fade out?
- Path Dependence: did pathways lead to strong agglomeration effects?

The Role of Factor Densities

Short-run historical factor densities

Table 6: Gold roads and factor densities in 1920

	Baseline	Popul.	Stations	Railroad	Literate	Teachers	Agric	Manuf.	Services	Transp.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Panel A - Dependent Variable: Factor Densities / Kleibergen-Paap F: 40.1										
Gold Road Density		-0.217 (0.450)	1.38 (2.13)	0.972 (1.86)	0.119 (0.459)	0.788 (0.660)	-0.671 (0.466)	0.594 (0.660)	0.546 (0.537)	0.430 (0.857)
Panel B - Dependent	Variable: l	og(Population	ı Density)							
Gold Road Density	2.17***	2.34***	2.03***	2.07***	2.08***	1.80***	2.62***	1.91***	1.84***	2.04***
Factor Density	(0.795)	(0.643) 0.7698*** (0.0715)	(0.747) 0.101*** (0.017)	(0.759) 0.103*** (0.017)	(0.633) 0.725*** (0.063)	(0.664) 0.474*** (0.056)	(0.673) 0.679*** (0.077)	(0.672) 0.438*** (0.044)	(0.644) 0.607*** (0.049)	(0.725) 0.302*** (0.034)
Kleibergen-Paap F:	40.984	41.110	39.999	40.440	41.027	40.879	40.661	40.922	40.723	41.257
Observations	620	620	620	620	620	620	620	620	620	620

- There is no relationship between the gold roads and population density in the initial years
- There is no support for the sunk investments hypothesis

Long-run: population dynamics

- The influence gradually intensifies from 1950 onwards (Panel A)
- A higher density of Gold roads is associated with accelerated population growth, between 1940 and 1970 (Panel B)

Long-run: sector densities

- Different sectoral compositions of the economies influenced by the historical pathways, likely induced by the characteristics of the road towns

Long-run: Modern transportation densities

- The effect on railroad and station density is approximately zero in all years
- There is an effect on paved roads in 1960.
 - This decade marks the beginning of the expansion of paved road infrastructure in Brazil, which was initially heavily concentrated in the state of São Paulo.

A model of economic geography with history dynamics

Estimating Productivity Spillovers

- Allen and Donaldson (2022):

(Labor Demand)
$$\ln w_{it} = \alpha_1 \ln L_{i,t} + \alpha_2 \ln L_{i,t-1} + \ln \bar{A}_{it}$$
 (Labor Supply) $\ln w_{it} = \left(\frac{1}{\theta} - \beta_1\right) \ln L_{it} + (-\beta_2) \ln L_{i,t-1} + \frac{1}{\theta} \ln \textit{IMMA}_{it} - \ln \bar{u}_{it}$

- α_1 and α_2 denote the strength of contemporaneous and historical productivity spillovers; β_1 and β_2 denote the strength of contemporaneous and historical amenity spillovers; θ represents the dispersion effect
- We use individual-level data to regress population density on hourly wages to measure agglomeration spillovers using historical pathways as an instrument.
 - Since we only use one instrument at a time, we are estimating α_1 and α_2 together

Agglomeration Spillovers

- We find productivity spillovers $\in [0.05, 0.10]$
- From the literature: Amenities spillovers (-0.15 and 0.15); Dispersion effect $\theta=4$
- Combining the parameters, $[1 \theta(\alpha_1 + \beta_1 + \alpha_2 + \beta_2)]^{-1}$ fall within the region characterized by possible multiple steady states.

Conclusions

- Historical pathways have a positive impact on the current distribution of population
- This effect is not driven by geography factor
- We show that they had no effects on population and factor densities in 1920, ruling out sunken investment and migration restriction forces
- Agglomeration forces featuring multiple equilibria seem to be the main reason why historical pathways are still important nowadays